大幅改訂	化学・生物総合管理の再教育講座(講義内容)2008年									前期	
科目No.		303	科目名	社会技術革新学特論3		サブネーム			エネルギー	と技術革新	
共催機関/連携機関		新エネルキー・産業技術総合開発機構・ /社会技術革新学会・/		レベル 基礎		講義日時 金曜日18:		30~20:00	講義場所	NEDO川崎本部	
			い。それにもかかわらず戦後のわが国の る。この講座では、その過程を追跡し、フ				きな発展を遂	げてきた。そ	の発展を支	えたのは、わが	国の産業分野におけるコ
サブタイトル	No	講義名	講 義 概 要					講義日	教室	講師名	所属
概要	1	エネルギーと変革側面	戦後のわが国の経済、産業、市民生活と、そ どは石油危機や好不況の波を乗越え、課題 球温暖化の関係を加え、本講座の趣旨、概	をはらみつつも	大きく変革し発			4月18日		山崎 博	ー ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
石油・ 石油代替エネルギー	2	豊富低廉な石油供給と石油危機	1960年から70年代前半に至る時期は世界を基盤に、世界に類例を見ない高度経済成問題として浮上してきた。そこを襲った二度(石油(備蓄の推進、石油代替エネルギーの開んだ。	長を遂げたが、 の石油危機によ	このひずみとも り日本経済は大	いえる深刻な公害問 きな打撃をうけたか	題が大きな社会 、これに対処して	4月25日		高砂智之	
	3	石炭、その他非在来型化石燃料	戦後の復興に大きな役割を担った石炭は、 の石油危機から賦存量が多く、中東などに るようになった。しかしCO2原単位、灰分なと 利用形態が求められている。オイルシェルな	偏在しないことた どが多く、環境負	などから、石油化 荷が高いことが	t替エネルギーとし いら利用効率の高い	て再び脚光を浴び	5月9日		溝口忠一	
	4	LNGの導入推進	LNGは二度の石油危機を経て供給の信頼 用、民生用に利用が拡大されてきた。また、 環境問題への効果的な対応が期待できるる。 る。	ガス・コジェネレ	ーション、燃料	電池など利用技術σ	進展により、地球	5月16日		高砂智之	
	5	原子力エネルギー	IPCCによる地球温暖化の国際的な究明の い原子力発電への期待が急速に高まってし ネルギー政策は大きく原子力へ転換しつつ まえ、わが国は「原子力立国計画」をエネル	ヽる。更に、グロ・ ある。準国産エ	ーバルなエネル ネルギーとして	ギー需要の激増か 自給率への貢献もた	ら、世界各国のエ tきいことなどを踏	5月23日		小川博巳	
	6	一次エネルギーの輸送と貯蔵	日本の石油、石炭、天然ガスの大部分は海 段とそれを貯蔵する設備や技術が必要とた 術、国内、海外のパイプラインの現状、国家	よる。この講義で	がは、輸送船舶	の歴史とそれを支え	た日本の造船技	5月30日		持田典秋	
産業技術の 省エネルギーへの挑戦	7	石油精製産業の省エネルギー	はじめに石油精製産業の概況・製油所の立程と主要プロセスを具体的に説明する。 さら 熟発生場所と温度レベルおよび潜在エネル を解説する。	に製油所のエネ	ルギー消費状	兄と消費原単位の推	養を解説し、排	6月6日	NEDO川 崎本部(JF		
	8	鉄鋼業の省エネルギー	粗鋼生産の約7割を占める銑鋼ー貫製鉄所 に要するエネルギー消費量は世界でも群を セスを追う。					6月13日	川崎駅前 ミューザ川 崎内)	持田典秋	
	9	セメント産業の省エネルギー	日本のセメント産業は省エネルギーで世界 る。また、これからの省エネは地球温暖化 たに理念を置いた廃棄物処理(資源リサイク	策と関連付けて ル)の現状と社:	「考える必要がる 会への貢献につ	あり、セメント産業で いて言及する。	のその取組みとそ	6月20日		山岸千丈	
	10	化学産業の省エネルギー	産業部門のエネルキ。一消費量は全エネル 最低値である。これは産業部門の今まで挑 のフロントランナーになり続けるには何をす らかにする。	戦してきた省エネ	トルギーの成果	でもある。過去に学	び今後更に世界	6月27日		松井達郎	
	11	家庭電化製品と省エネルギー	家電製品の家事の補助機器から一家団欒 合わせ、家電製品の社会的意義について考 うに電力多消費型機器の普及に伴う中で、は る。	える。また、冷雨	歳庫の大型化	エアコンの一部屋に	一台への例のよ	7月4日		田中貴雄	
知恵と工夫の 省エネルギー	12	コジェネレーション技術の発展	発電とともに熱を回収し有効活用する、いわな工場・業務用施設での採用が進み30年の工場・業務用施設、さらには民生用分野へ	D歴史があり、総	発電容量は86)万kwに達している	。今後中小規模	7月11日		高砂智之	
	13	廃棄物のエネルギー利用	はじめに廃棄物の定義と、種類ごとの発生 シャルを示し、一般廃棄物のエネルギー利 焼却発電の現状、プロセス条件、発電効率を 増大に有効な対策を提案する。	用形態と、清掃エ	- 場のエネルギ	一回収方法を解説す	「る。続いてごみ	7月18日		松村 真	
	14	プロセス改変による省エネルギー	化学産業などにおける省エネルギーは、設 後者の二つが特に大きい。本講では主として パクトを産業に与えるかを、幾つかの事例を	て化学産業に於	ける「プロセスの)改変,技術革新」が	如何に大きなイン	7月25日		日置 敬	
	15	省エネルギーと計算機利用	1960年代の中頃から、それまでのソロバン産設備の計画、設計に計算機が導入され、く、技術的にも大きく発展し、設備の運転効る。	運転へと次第に	利用範囲を拡え	くした。その後の計	算機の進歩は著し	8月1日		山崎 博]